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(i.e., directly-follows graph)
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(i.e., Petri net, BPMN)
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Process trees



Alpha algorithm example
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<A, B, C>
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<A, B, B, B, B, C>
<A, D, C>

A B C D

A 3 1

B 3 3

C

D 1

Directly follows relation
a -> b

Parallel relation
a -> b && b -> a

Causal relation
a -> b && !(b -> a)

Unrelated relation
!(a -> b) && !(b -> a)

A

D

C

B
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Precision

Simplicity Generalization

[<a, b, c, d>2, <a, c, b, d>2, 
<a, d, b, c>]

Fitness
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Count the percentage of traces which fully 
fit the discovered model

Naive approaches Token replay game

P - produced tokens
C - consumed tokens
M - missing tokens
R - remaining tokens

Fitness = 0.5 * (1 - M/C) + 0.5 * (1 - R/P)

Alignments

Log a b >>

Model >> b c

Synchronous 
move

Log
move

Model
move

Fitness = 1 - alignment/worst_alignemnt
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Stream of events Stream of traces

(en-1, tn-1, cn-1), (en, tn, cn), (en+1, tn+1, cn+1)

e - an event class
t - a timestamp of the event

c - case identifier

A complete trace
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T1 algorithms
(caching whole log + rediscover model each time)

<A, B, C>
<A, B, B, C>
<A, B, B, B, B, C>
<A, D, C>

Different caching strategies, i.e., strategy 
based on time, last updated trace, etc.

T2 algorithms
(online update of an abstraction + rediscovery each time)

A

BD

D

b

… b c a b a

Events stream

Abstraction

Discovered model

T3 algorithms
(incremental update of the discovered model)

… a b c b d

Traces stream

b

Discovered model



T2 Algorithms
S-BAR Architecture: concept
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(en-1, tn-1, cn-1)

(en, tn, cn)

(en+1, tn+1, cn+1)

Abstraction

Online update of 
the abstraction

Offline process 
model discovery



T2 Algorithms
S-BAR Architecture: formal description
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T2 Algorithms
S-BAR Architecture: storing the abstraction
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Lossy 
Count

Space 
Saving

Frequent

(en-1, tn-1, cn-1)

(en, tn, cn)

(en+1, tn+1, cn+1)

Directly 
follows 
relation



T2 Algorithms
S-BAR Architecture: Lossy Count and Frequent
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HashMap<String, String> HashMap<(String, String), u64>



T2 Algorithms
S-BAR Architecture: Instantiations
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Streaming
directly-follows graph

Alpha-miner

Inductive Miner

Heuristics Miner

Enables streaming 
implementation for



T3 Algorithms
Incremental update of existing model
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<a, b, c, d, a, b, d, c,…>

Incremental update of process 
trees, so that the model 
matches new “event log”

<a, b, c, d, a,…>

<a, b, c, d, a, b,…>
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Already discovered 
process tree

Existing 
event log

New trace

Offline discovery 
algorithms (IM)

Discover sub-logs for each 
process tree node

Locate not conforming parts of 
the process tree

Update sub-logs for 
affected sub-trees

Rediscover new 
process tree for 
affected nodes

T3 Algorithms
Example approach overview



T3 Algorithms
Example approach overview: creating sub-logs
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T3 Algorithms
Example approach overview: locating deviations
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T3 Algorithms
Example approach overview: repairing existing tree
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New trace: <a, b, b, e, f>



T3 Algorithms
Practical application: Cortado
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Online Conformance Checking
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Incremental 
computing of 

prefix-alignments

Conformance 
checking based on 

behavioral patterns
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Online Conformance Checking
Behavioral patterns
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Online Conformance Checking
Behavioral patterns
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Online Conformance Checking
Behavioral patterns
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Online Conformance Checking
Prefix-alignments
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Online Conformance Checking
Prefix-alignments
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The Need for Streaming Process Mining
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Thanks for the 
attention
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