Streaming Process Mining
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Initial event log Discovered abstraction Discovered process model
(i.e., directly-follows graph) (i.e., Petri net, BPMN)
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Petri nets

Definition 2.2 (Petri net, unlabelled Petri net). A Petri net over a given alphabet ¥ is

a tuple (P, T, A, Mo, F,l) consisting of:
e a set of places P;
e a set of transitions T, such that P nT = &;
e a multiset arc relation A S M((P x T) u (T x P));

e an initial marking mo S M(P);

a set of final markings F, being a set of multisets over P;

e a partial labelling function I: T — X.

Definition 2.3 (workflow net). A workflow net is a Petri net (P,T, A, mo, F,l) such
that

e there is a single i € P such that *i = JJ;

e there is a single o € P such that o* = JJ;

e all places (P) and transitions (T') are on a path from i to o;
e the initial marking consists of i: mo = [i];

e the only final marking consists of o: F = {[o]}.

Definition 2.4 (soundness). Let W = (P, T, A, [i], [0],l) be a workflow net, in which i
is the source place and o is the sink place. W is sound if and only if:

e cvery transition can be fired, i.e. Vier I[o)wm "t S m;

o from every marking, reachable from [i], it is possible to reach [0], i.e. Vijwom M ~>
[o];

e cvery marking, reachable from [i], that puts a token in o has no other tokens, i.e.
V[i]wm 0 € m = [o] = m.
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Process trees




Alpha algorithm example

Directly follows relation
a->b

Parallel relation
a->b&&b->a

Causal relation
a->b&&!(b->a)

Unrelated relation
'(a->b) &&!(b->a)
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Fitness

, precision,

O
NOfz

Simplicity

fitness, precision,

, simple

d [~

Precision

fitness, , general, simple
a b
C d

[<a, b, ¢, d>?, <a, c, b, d>?,

<a, d, b, c>]
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Naive approaches

Count the percentage of traces which fully
fit the discovered model

Token replay game

P - produced tokens
C - consumed tokens
M - missing tokens

R - remaining tokens

Fitness = 0.5 * (1-M/C) + 0.5 * (1 - R/P)

Alignments
Synchronous
move
Log a b pps
Model | >> ») C
Log Model
move move

Fitness = 1 - alignment/worst_alignemnt




Stream of events Stream of traces

(e, t,cC)

e - an event class A complete trace
t - a timestamp of the event
C - case identifier



T1 algorithms T2 algorithms T3 algorithms

(caching whole log + rediscover model each time) (online update of an abstraction + rediscovery each time) (incremental update of the discovered model)

Events stream

blc|la|b]|a

l Traces stream

Abstraction

alblc|b]|d

B C LRI
. (x>
<A, BI Bl ! Bl C>
<A, D, C>
OO |
. . A Discovered model
Different caching strategies, i.e., strategy e

based on time, last updated trace, etc. Q_» b @
Discovered model

O =0
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T2 Algorithms

S-BAR Architecture: concept

Online update of
the abstraction

n’ n’

Offline process
model discovery

~N_

Abstraction
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T2 Algorithms

S-BAR Architecture: formal description

) 1 2 n
I
S(1) (c1,a1) (c2,a2) (Cn,an)
// // //
7/ / g
( ( (
| | |
| | |
| | |
Df----1->pf ----1HDT -5 oL DT
N \ N
Spr 3 5, \
T T
“4?? “42 fin
| T | |
Lo Mor ] :
My Mo My
T
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T2 Algorithms

S-BAR Architecture: storing the abstraction

(e, t,c)

n’ ~n’

Directly
fFollows
relation
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T2 Algorithms

S-BAR Architecture: Lossy Count and Frequent

Algorithm 2: D¢ (Lossy)

input :k €N, S e (C x A)¥, DA
begin

1 Ii,A <0, X <0,

2 while true do

3 i<—i+1;

4 (c,a) < S(i);

5 if EI((./_U/)EX(C/ = ¢) then

6 Ve < ve + 1;

7 DAY (@, a));

8 | X < (XU{c, oD\ {(c,a")k
9 else

10 X <« XU{(c,a)};

11 | Ve < A

12 if |i/k] # A then

13 foreach (c’,a’) € X do
14 if v <A then

15 | X < X\(,d);
16 | A< li/kl;

HashMap<String, String>

Algorithm 3: D4 (Frequent)

HashMap<(String, String), u64>

input 1k e N, Sy € (A x A)*

begin
1 X «—0,i < 0;
2 while true do
3 i <—i+1;
4 (a,a’y < Su(i);
5 if (a,d’) € X then
6 I__ Va,a") < Va,a) +1;
7 else if | X| < k then
8 X<« XU {(a.a’)};
| Via.ad') < 1
10 else
11 foreach (x, y) € X do
| ) V(\\) <« V('\-’_v) == 1,
13 if v(, y) =0 then
14 | X < X\ {(x,n}
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T2 Algorithms

S-BAR Architecture: Instantiations

Alpha-miner

Enables streaming
implementation for

Inductive Miner

~N_

Streaming
directly-follows graph

Heuristics Miner
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T3 Algorithms

Incremental update of existing model

<a,b,cd q,b,dc,..>

Incremental update of process
trees, so that the model
matches new “event log”




T3 Algorithms

Example approach overview

Already discovered

Discover sub-logs for each Locate not conforming parts of
rocess tree process tree node the process tree
0]
Existing
Update sub-logs for
event lOg affected sub-trees
+ Rediscover new
process tree for
New trace affected nodes

+

Offline discovery
algorithms (IM)
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T3 Algorithms

Example approach overview: creating sub-logs

T

Algorithm 1: Calculation of sub event logs for process trees

Input: LeB(A*),T€Ta (Assumption: {c€L}CL(T)))
Output: sub event log for each subtree of T, i.e., s: T4 — B(A")
begin

1 forall subtrees T’ of T do
2 L S(T') — [] // initialize sub event logs
3 forall ;€L do
4 let "YEF(O’, T) // calculate optimal alignment for o and T
5 forall subtrees T' of T do
6 [_ t(T’) «— () // initialize trace for each subtree
7 for ie{1,...,|y|} do
8 m < ’)’(’L) // extract i-th alignment move
9 T 71'2(m) // extract executed process leaf node
10 forall subtrees T’ of T do
11 if Ty is subtree of T' V T;=T' then
12 ‘ t(T’) «— t(T')-<7r2(m)) // add executed activity to T’’s trace
13 else if t(T")#() then
14 S(T/) — S(T’)L‘H[t(TI)] // add trace to T'’s sub event log
15 L t(T,) «~ () // reset trace
16 return s

a b = @ d a b e i T e
= : - S = : - 7 o |[{a,b,c,d,a,b,e, f)]
(Ta.1) | (Ta.2) PRI (T4.3) | (Ta.4) (€LY (T4.1) | (Ts.2) | (T2.3) [(T2.4) Ti1| [{a,b,c,d,a,b)]
To | o 75 | o To | T6 | To | To Taa|  [(a,b)?, (c,d)]
Tra | Tha 21 | 2ha Tia | Tha 2
g | Toa 25 | Ioa Tra | Ion Ts1 [(a:6)7]
T3.1 | T3 T31 | T3a Ts3.2 [(e,d)]
T | Tap
The | Tha Ti2 [{e, /)]

(a) Alignment and listing of subtrees containing the exe-
cuted process tree leave nodes

(b) Sub event logs
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T3 Algorithms

Example approach overview: locating deviations
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T3 Algorithms

Example approach overview: repairing existing tree

New trace: <a, b, b, e, f>

[{a,b,c,d,a,b,e, f)] [{a,b,c,d,a,b,e, f)]
— —
[(a,b,c,d,a, b [{e, )] [{a,b,c,d,a, b [(e, )]
[(a,b)Q, O VAN i [(a,b)Z, O N
(e, d)] (c,d)]
X - MO ® (a,b)?, |X - O @
A @b (e
LCA|— N 1 A

_______________
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T3 Algorithms

Practical application: Cortado

B- 8 < >

o e

© & conformance check
Sub-
Variants

. G 0.1% :

m

m

=

~ [01%
a OK s 1

fitting traces: 1/ 990 (0.1%)

& | O®

* add variant(s) to model

Variant (334)

. discover initial model

v

B 2

@

Q Expert Mode

O [AciityOveNenIll \iode! Performance =

o R 4+ 28 O @ @- Ay in »» #
name model

I

Spirometry

Computer Ai Vv 86
Electrocardic V¥ 504

Excision of U il 428

General phy: v v v 2006
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¥ Variant Query

fitting variants: 1 /934 (0.1%)
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Other Non-C V| 135
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Online Conformance Checking

Incremental Conformance
computing of checking based on
prefix-alignments behavioral patterns
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Online Conformance Checking

Behavioral patterns

Definition 1 (Behavioural Pattern). Given a set of activities A and a set of possible
control-flow relations R, a behavioural pattern is defined as b(ay, ay) where ay,ay € A

are activities and b € R represents a control-flow relation. An alternative writing of
b(ay,as) is a1 b as.

Conformance
Based on the correctness of the relations so far

Completeness Confidence
Based on the amount of previous relations Based on the estimated behavior still to observe

A

- ] 1
-€

Y

Previous behavioral patterns Latest behavioral Future behavioral patterns

pattern observed (not yet observed)
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Online Conformance Checking

Behavioral patterns

Fig. 1: Running example considered throughout this paper.

Table 1: Comparison of offline ([2]) and online conformance values (as proposed in this
paper) based on the process model in Fig. 1.

T Offline Online

Conformance | Conformance Completeness Confidence
t1=(A,Al,B,E,F) 1.00 1.00 1.00 1.00
te=AB,C, D, F) 0.78 1.00 0.60 1.00
ts = (A, Al, A2, A1, B) 0.80 1.00 1.00 0.50
ty =HB,C; D) 0.62 1.00 0.50 0.75
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Online Conformance Checking

Behavioral patterns

Algorithm 1: Online conformance computation

Input: S: stream of behavioural patterns
M = (B, P, F): process model for online conformance
(finite) set of observed prescribed patterns
// Maps case ids to integers

1 Initialize map obs // Maps case ids to

2 Initialize map inc

3 forever do
4 (C,b,t) L observe(S) // New observable unit from the stream
// Step 1: update internal data structures
5 if b € B then
6 | obs(c) + obs(c) U {b} // If b already in obs(c), then no effect
7 else
8 [ inc(e) +inc(e) +1
// Step 2: compute online conformance values
Jobs(c)|
9 conformance(c) + ———————
|obs(¢)| + inc(c)
10 Notify new value of conformance(c)
11 ifb € B then
12 if Prin(b) < |obs(c)| < Prax(b) then
13 | completeness(c) «+ 1
14 else
obs(c
15 completeness(c) - min {1, &}
Prin(b) +1
fid (3] 1 F)
16 confidence(c) + 1 — —————
max,/ . g F(b')
17 Notify new values of completeness(c) and confidence(c)
// Step 3: cleanup
18 if size of obs and inc is close to max capacity then
19 L Remove oldest entries from obs and inc

Fig. 1: Running example considered throughout this paper.

Table 1: Comparison of offline ([2]) and online conformance values (as proposed in this
paper) based on the process model in Fig. 1.

Trace ’ Offline Online

Conformance | Conformance Completeness Confidence
t1 =(A,Al,B,E,F) 1.00 1.00 1.00 1.00
t2={B,C,D, F) 0.78 1.00 0.60 1.00
ts = (A, Al, A2, A1, B) 0.80 1.00 1.00 0.50
f={B,€,D) 0.62 1.00 0.50 0.75
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Online Conformance Checking

Prefix-alignments

new event Extend SPN by extended SPN R Perform revised prefix-alignment
(c,a) new activity a I A* algorithm !
. Update SPN for Load open- Update open-
Load SPN
case-id ¢ with & closed set & closed set

for case-id ¢ ;
extended SPN for case-id ¢ for case-id ¢

R - R
Open- & Closed
set cache
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Online Conformance Checking

Prefix-alignments

create account submit order
) a m b
p1 t1 p2 ts p3
to ta
(&

po th Py th  py  ty  py
O PO PO PO

(a) Trace net of the trace (a, b, c)

request quote

trace net part

PE) (tll7 >) Pll (tl27 ) plz (tga >) pé

process net part

(b) SPN N7 of (a,b,c) and the WF-net N;
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The Need for Streaming Process Mining

Requests Execution
EE— events Online Grouped events
Procfiler Procfiler events queue
User :
Events batches
Backend <~ Ficus events queue Ficus
- Discovered and "
annotated models
: Dashboard
@) System ;
monitoring () : @_Dp‘o’o\
<———f : jaje)
: O-0~O
Manager :
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Thanks for the
attention
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